Contents

Prefa	ace	xiii
Acknowledgments		xvii
Abou	at the Author	xix
Nom	enclature	xxi
Part	t I Pure Fluids	1
Chap	oter 1 Scope and Language of Thermodynamics	3
1.1	Molecular Basis of Thermodynamics	5
1.2	Statistical versus Classical Thermodynamics	11
1.3	Definitions	13
1.4	Units	22
1.5	Summary	26
1.6	Problems	26
Chap	ter 2 Phase Diagrams of Pure Fluids	29
2.1	The PVT Behavior of Pure Fluid	29
2.2	Tabulation of Properties	40
2.3	Compressibility Factor and the ZP Graph	43
2.4	Corresponding States	45
2.5	Virial Equation	53
2.6	Cubic Equations of State	57
2.7	PVT Behavior of Cubic Equations of State	61
2.8	Working with Cubic Equations	64
2.9	Other Equations of State	67
2.10	Thermal Expansion and Isothermal Compression	71
2.11	Empirical Equations for Density	72
2.12	Summary	77
2.13	Problems	78

viii	Contents

Chap	ter 3 Energy and the First Law	87
3.1	Energy and Mechanical Work	88
3.2	Shaft Work and PV Work	90
3.3	Internal Energy and Heat	96
3.4	First Law for a Closed System	98
3.5	Elementary Paths	101
3.6	Sensible Heat—Heat Capacities	109
3.7	Heat of Vaporization	119
3.8	Ideal-Gas State	124
3.9	Energy Balances and Irreversible Processes	133
3.10	Summary	139
3.11	Problems	140
Chap	ter 4 Entropy and the Second Law	149
4.1	The Second Law in a Closed System	150
4.2	Calculation of Entropy	153
4.3	Energy Balances Using Entropy	163
4.4	Entropy Generation	167
4.5	Carnot Cycle	168
4.6	Alternative Statements of the Second Law	177
4.7	Ideal and Lost Work	183
4.8	Ambient Surroundings as a Default Bath—Exergy	189
4.9	Equilibrium and Stability	191
4.10	Molecular View of Entropy	195
4.11	Summary	199
4.12	Problems	201
Chap		205
5.1	Calculus of Thermodynamics	205
5.2	Integration of Differentials	213
5.3	Fundamental Relationships	214
5.4	Equations for Enthalpy and Entropy	217
5.5	Ideal-Gas State	219
5.6	Incompressible Phases	220
5.7	Residual Properties	222
5.8	Pressure-Explicit Relations	228
5.9	Application to Cubic Equations	230
5.10	Generalized Correlations	235
5.11	Reference States	236

Contents	ix
----------	----

	Thermodynamic Charts	242
	Summary	245
5.14	Problems	246
Chap	ter 6 Balances in Open Systems	251
6.1	Flow Streams	252
6.2	Mass Balance	253
6.3	Energy Balance in Open System	255
6.4	Entropy Balance	258
6.5	Ideal and Lost Work	266
6.6	Thermodynamics of Steady-State Processes	272
6.7	Power Generation	295
6.8	Refrigeration	301
6.9	Liquefaction	309
6.10	Unsteady-State Balances	315
6.11	Summary	323
6.12	Problems	324
Chap	ter 7 VLE of Pure Fluid	337
7.1	Two-Phase Systems	337
7.2	Vapor-Liquid Equilibrium	340
7.3	Fugacity	343
7.4	Calculation of Fugacity	345
7.5	Saturation Pressure from Equations of State	353
7.6	Phase Diagrams from Equations of State	356
7.7	Summary	358
7.8	Problems	360
Part	II Mixtures	367
Chap	ter 8 Phase Behavior of Mixtures	369
8.1	The <i>Txy</i> Graph	370
8.2	The Pxy Graph	373
8.3	Azeotropes	380
8.4	The xy Graph	381
8.5	VLE at Elevated Pressures and Temperatures	383
8.6	Partially Miscible Liquids	384
8.7	Ternary Systems	390

x	Contents
---	----------

8.8	Summary	393
8.9	Problems	394
Chap	ter 9 Properties of Mixtures	401
9.1	Composition	402
9.2	Mathematical Treatment of Mixtures	404
9.3	Properties of Mixing	409
9.4	Mixing and Separation	411
9.5	Mixtures in the Ideal-Gas State	413
9.6	Equations of State for Mixtures	419
9.7	Mixture Properties from Equations of State	421
9.8	Summary	428
9.9	Problems	428
Chap	ter 10 Theory of Vapor-Liquid Equilibrium	435
10.1	Gibbs Free Energy of Mixture	435
10.2	Chemical Potential	439
10.3	Fugacity in a Mixture	443
10.4	Fugacity from Equations of State	446
	VLE of Mixture Using Equations of State	448
10.6	Summary	453
10.7	Problems	454
Chap	ter 11 Ideal Solution	461
-	Ideality in Solution	461
11.2	Fugacity in Ideal Solution	464
11.3	VLE in Ideal Solution–Raoult's Law	466
11.4	Energy Balances	475
11.5	Noncondensable Gases	480
11.6	Summary	484
11.7	Problems	484
Chap	ter 12 Nonideal Solutions	489
•	Excess Properties	489
12.2	Heat Effects of Mixing	496
12.3	Activity Coefficient	504
12.4	Activity Coefficient and Phase Equilibrium	507
12.5	Data Reduction: Fitting Experimental Activity Coefficients	512
12.6	Models for the Activity Coefficient	515
12.7	Summary	531
12.8	Problems	533

Contents

Chapter 13 Miscibility, Solubility, and Other Phase Equilibria	545
13.1 Equilibrium between Partially Miscible Liquids	545
13.2 Gibbs Free Energy and Phase Splitting	548
13.3 Liquid Miscibility and Temperature	556
13.4 Completely Immiscible Liquids	558
13.5 Solubility of Gases in Liquids	563
13.6 Solubility of Solids in Liquids	575
13.7 Osmotic Equilibrium	580
13.8 Summary	586
13.9 Problems	586
Chapter 14 Reactions	593
14.1 Stoichiometry	593
14.2 Standard Enthalpy of Reaction	596
14.3 Energy Balances in Reacting Systems	601
14.4 Activity	606
14.5 Equilibrium Constant	614
14.6 Composition at Equilibrium	622
14.7 Reaction and Phase Equilibrium	624
14.8 Reaction Equilibrium Involving Solids	629
14.9 Multiple Reactions	632
14.10 Summary	636
14.11 Problems	637
Bibliography	647
Appendix A Critical Properties of Selected Compounds	649
Appendix B Ideal-Gas Heat Capacities	653
Appendix C Standard Enthalpy and Gibbs Free Energy of Reaction	655
Appendix D UNIFAC Tables	659
Appendix E Steam Tables	663
Index	677