Contents

Preface			ix		4.2	Worked problems on mechanisms	4.1
_			_		4.2	and pin-jointed trusses	41
Part	1 Sta	atics and strength of materials	1		4.3	Graphical method	42
					4.4	Method of joints (a	16
1	The ef	ffects of forces on materials	1		4.5	mathematical method)	46
	1.1	Introduction	1		4.5	The method of sections	50
	1.2	Tensile force	2			(a mathematical method)	52
	1.3	Compressive force	2			Assignment 1	55
	1.4	Shear force	2			Assignment 1	33
	1.5	Stress	2	_			
	1.6	Strain	3	5		supported beams	57
	1.7	Elasticity, limit of			5.1	The moment of a force	57
		proportionality and elastic limit	6		5.2	Equilibrium and the	
	1.8	Hooke's law	7			principle of moments	58
	1.9	Ductility, brittleness			5.3	Simply supported beams	
		and malleability	11			having point loads	61
	1.10	Modulus of rigidity	12		5.4	Simply supported	
	1.11	Thermal strain	12			beams with couples	64
	1.12	Compound bars	13				
				6	Bendin	g moment and	69
2	Tensile	e testing	18			orce diagrams	
	2.1	The tensile test	18		6.1	Introduction	69
	2.2	Worked problems			6.2	Bending moment (M)	69
		on tensile testing	19		6.3	Shearing force (F)	69
	2.3	Further worked problems			6.4	Worked problems on	
		on tensile testing	21			bending moment and	
						shearing force diagrams	70
3	Forces	acting at a point	25		6.5	Uniformly distributed loads	78
	3.1	Scalar and vector quantities	25			·	
	3.2	Centre of gravity and equilibrium	25	7	First a	nd second moment of areas	84
	3.3	Forces	26	′	7.1	Centroids	84
	3.4	The resultant of			7.2	The first moment of area	84
		two coplanar forces	27		7.3	Centroid of area between	01
	3.5	Triangle of forces method	28		7.5	a curve and the x -axis	84
	3.6	The parallelogram			7.4	Centroid of area between	01
		of forces method	29		7.1	a curve and the y-axis	85
	3.7	Resultant of coplanar			7.5	Worked problems on	0.5
		forces by calculation	29		7.5	centroids of simple shapes	86
	3.8	Resultant of more than			7.6	Further worked problems on	00
		two coplanar forces	30		7.0	centroids of simple shapes	87
	3.9	Coplanar forces in equilibrium	32		7.7	Second moments of	0,
	3.10	Resolution of forces	34		,.,	area of regular sections	88
	3.11	Summary	37		7.8	Second moment of area	00
		•			7.0	for 'built-up' sections	96
4	Forces	in structures	40			tor care up sections	,,
	4.1	Introduction	40			Assignment 2	102

8	Bendir	ng of beams	103	15	Frictio	on	170
	8.1	Introduction	103		15.1	Introduction to friction	170
	0.0	σ M E	102		15.2	Coefficient of friction	170
	8.2	To prove that $\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}$	103		15.3	Applications of friction	172
	8.3	Worked problems on			15.4	Friction on an inclined plane	173
		the bending of beams	105		15.5	Motion up a plane with	
		E				the pulling force P	
9	Torque	<u>a</u>	109			parallel to the plane	173
	9.1	Couple and torque	109		15.6	Motion down a plane	
	9.2	Work done and power	105			with the pulling force	
		transmitted by a constant torque	110			P parallel to the plane	174
	9.3	Kinetic energy and			15.7	Motion up a plane due	
		moment of inertia	112			to a horizontal force P	175
	9.4	Power transmis-			15.8	The efficiency of a screw jack	177
		sion and efficiency	116				
		·		16	Motio	n in a circle	182
10	Twisti	ng of shafts	120		16.1	Introduction	182
	10.1	Introduction	120		16.2	Motion on a curved banked track	184
		$oxed{\tau}$ T $G heta$			16.3	Conical pendulum	185
	10.2	To prove that $\frac{\tau}{r} = \frac{T}{J} = \frac{G\theta}{L}$	120		16.4		187
	10.3	Worked problems on			16.5	Centrifugal clutch	189
		the twisting of shafts	122				
				17	Simple	e harmonic motion	191
		Assignment 3	126		17.1	Introduction	191
					17.2	Simple harmonic motion (SHM)	191
Par	t 2 Dy	namics	127		17.3	The spring-mass system	192
					17.4	* *	194
11	Linear	and angular motion	127		17.5	The compound pendulum	195
	11.1	The radian	127		17.6	Torsional vibrations	196
	11.2	Linear and angular velocity	127				
		Linear and angular acceleration	129	18	Simple	e machines	198
		Further equations of motion	130		18.1	Machines	198
	11.5	Relative velocity	132		18.2	Force ratio, movement	
						ratio and efficiency	198
12	Linear	momentum and impulse	136		18.3	Pulleys	200
	12.1	Linear momentum	136		18.4	3	202
	12.2	Impulse and impulsive forces	139		18.5	Gear trains	203
					18.6	Levers	205
13	Force,	mass and acceleration	144			A	200
		Introduction	144			Assignment 5	209
	13.2	Newton's laws of motion	144	_			
	13.3	Centripetal acceleration	147	Par	t3 H	eat transfer and fluid mechanics	211
	13.4	Rotation of a rigid					
		body about a fixed axis	149	19		energy and transfer	211
	13.5	Moment of inertia (I)	149		19.1	Introduction	211
					19.2	The measurement of temperature	212
14	Work,	energy and power	153		19.3	Specific heat capacity	212
	14.1	Work	153		19.4	Change of state	214
	14.2	Energy	157		19.5	Latent heats of fusion	
	14.3	Power	159			and vaporisation	215
	14.4	Potential and kinetic energy	162		19.6	A simple refrigerator	217
	14.5	Kinetic energy of rotation	165		19.7	Conduction, convec-	21-
			1.00		10.0	tion and radiation	217
		Assignment 4	169		19.8	Vacuum flask	218

	19.9	Use of insulation			22.10	Float and tapered-tube meter	251
		in conserving fuel	218		22.11	Electromagnetic flowmeter	252
		C			22.12	Hot-wire anemometer	253
20	Thermal expansion		221		22.13	Choice of flowmeter	253
	20.1	Introduction	221		22.14	Equation of continuity	253
	20.2	Practical applications			22.15	Bernoulli's Equation	254
		of thermal expansion	221		22.16	Impact of a jet on	
	20.3	Expansion and con-				a stationary plate	255
		traction of water	222				
	20.4	Coefficient of linear expansion	222	23	Ideal :	gas laws	258
	20.5	Coefficient of super-			23.1		258
		ficial expansion	224		23.2	Boyle's law	258
	20.6	Coefficient of cubic expansion	225		23.3	Charles' law	259
		Assignment 6	229		23.4	The pressure law	260
		Assignment 0	229		23.5	Dalton's law of partial pressure	260
21	Hydro	statics	230		23.6	Characteristic gas equation	261
	21.1	Pressure	230		23.7	Worked problems on the	
	21.2	Fluid pressure	231			characteristic gas equation	261
	21.3	Atmospheric pressure	232		23.8	Further worked problems on	
	21.4	Archimedes' principle	233			the characteristic gas equation	263
	21.5	Measurement of pressure	235				
	21.6	Barometers	235	24	The n	neasurement of temperature	267
	21.7	Absolute and gauge pressure	237		24.1	Introduction	267
	21.8	The manometer	237		24.2	Liquid-in-glass thermometer	267
	21.9	The Bourdon pressure gauge	238		24.3	Thermocouples	268
	21.10	Vacuum gauges	239		24.4	Resistance thermometers	270
	21.11	Hydrostatic pressure			24.5	Thermistors	272
		on submerged surfaces	240		24.6	Pyrometers	272
	21.12	Hydrostatic thrust			24.7	Temperature indicating	
		on curved surfaces	241			paints and crayons	274
	21.13	Buoyancy	241		24.8	Bimetallic thermometers	274
	21.14	The stability of floating bodies	242		24.9	Mercury-in-steel thermometer	274
					24.10	Gas thermometers	275
22	Fluid flow		247		24.11	Choice of measuring device	275
	22.1	Introduction	247			-	
	22.2	Differential pressure flowmeters	247			Assignment 7	277
	22.3	Orifice plate	247			•	070
	22.4	Venturi tube	248	A list of formulae		279	
	22.5	Flow nozzle	249	Greek alphabet		nahet	283
	22.6	Pitot-static tube	249			iusei	4 0.
	22.7	Mechanical flowmeters	250	Answers to multiple-choice questions			28 4
	22.8	Deflecting vane flowmeter	250			•	
	22.9	Turbine type meters	250	Ind	ex		287